skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ueyama, Masahito"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. na (Ed.)
    Abstract Global warming increases ecosystem respiration (ER), creating a positive carbon-climate feedback. Thermal acclimation, the direct responses of biological communities to reduce the effects of temperature changes on respiration rates, is a critical mechanism that compensates for warming-induced ER increases and dampens this positive feedback. However, the extent and effects of this mechanism across diverse ecosystems remain unclear. By analyzing CO2 flux data from 93 eddy covariance sites worldwide, we observed thermal acclimation at 84 % of the sites. If sustained, thermal acclimation could reduce projected warming-induced nighttime ER increases by at least 25 % across most climate zones by 2041-2060. Strong thermal acclimation is particularly evident in ecosystems at high elevation, with low-carbon-content soils, and within tundra, semi-arid, and warm-summer Mediterranean climates, supporting the hypothesis that extreme environments favor the evolution of greater acclimation potential. Moreover, ecosystems with dense vegetation and high productivity such as humid tropical and subtropical forests generally exhibit strong thermal acclimation, suggesting that regions with substantial CO2 uptake may continue to serve as strong carbon sinks. Conversely, some ecosystems in cold continental climates show signs of enhancing thermal responses, the opposite of thermal acclimation, which could exacerbate carbon losses as climate warms. Our study underscores the widespread yet climate-specific patterns of thermal acclimation in global terrestrial ER, emphasizing the need to incorporate these patterns into Earth System Models for more accurate carbon-climate feedback projections. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  2. Abstract. Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands (>45° N), accounting for 42 % of global wetland area, are increasingly vulnerable to carbon loss, especially as CH4 emissions may accelerate under intensified high-latitude warming. However, the magnitude and spatial patterns of high-latitude CH4 emissions remain relatively uncertain. Here, we present estimates of daily CH4 fluxes obtained using a new machine learning-based wetland CH4 upscaling framework (WetCH4) that combines the most complete database of eddy-covariance (EC) observations available to date with satellite remote-sensing-informed observations of environmental conditions at 10 km resolution. The most important predictor variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, and soil moisture. Our results, modeled from 138 site years across 26 sites, had relatively strong predictive skill, with a mean R2 of 0.51 and 0.70 and a mean absolute error (MAE) of 30 and 27 nmol m−2 s−1 for daily and monthly fluxes, respectively. Based on the model results, we estimated an annual average of 22.8±2.4 Tg CH4 yr−1 for the northern wetland region (2016–2022), and total budgets ranged from 15.7 to 51.6 Tg CH4 yr−1, depending on wetland map extents. Although 88 % of the estimated CH4 budget occurred during the May–October period, a considerable amount (2.6±0.3 Tg CH4) occurred during winter. Regionally, the Western Siberian wetlands accounted for a majority (51 %) of the interannual variation in domain CH4 emissions. Overall, our results provide valuable new high-spatiotemporal-resolution information on the wetland emissions in the high-latitude carbon cycle. However, many key uncertainties remain, including those driven by wetland extent maps and soil moisture products and the incomplete spatial and temporal representativeness in the existing CH4 flux database; e.g., only 23 % of the sites operate outside of summer months, and flux towers do not exist or are greatly limited in many wetland regions. These uncertainties will need to be addressed by the science community to remove the bottlenecks currently limiting progress in CH4 detection and monitoring. The dataset can be found at https://doi.org/10.5281/zenodo.10802153 (Ying et al., 2024). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Climate change is rapidly altering composition, structure, and functioning of the boreal biome, across North America often broadly categorized into ecoregions. The resulting complex changes in different ecoregions present a challenge for efforts to accurately simulate carbon dioxide (CO2) and energy exchanges between boreal forests and the atmosphere with terrestrial ecosystem models (TEMs). Eddy covariance measurements provide valuable information for evaluating the performance of TEMs and guiding their development. Here, we compiled a boreal forest model benchmarking dataset for North America by harmonizing eddy covariance and supporting measurements from eight black spruce (Picea mariana)-dominated, mature forest stands. The eight forest stands, located in six boreal ecoregions of North America, differ in stand characteristics, disturbance history, climate, permafrost conditions and soil properties. By compiling various data streams, the benchmarking dataset comprises data to parameterize, force, and evaluate TEMs. Specifically, it includes half-hourly, gap-filled meteorological forcing data, ancillary data essential for model parameterization, and half-hourly, gap-filled or partitioned component flux data on CO2(net ecosystem production, gross primary production [GPP], and ecosystem respiration [ER]) and energy (latent [LE] and sensible heat [H]) and their daily aggregates screened based on half-hourly gap-filling quality criteria. We present a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to: (1) demonstrate the utility of our dataset to benchmark TEMs and (2) provide guidance for model development and refinement. Model skill was evaluated using several statistical metrics and further examined through the flux responses to their environmental controls. Our results suggest that CLASSIC tended to overestimate GPP and ER among all stands. Model performance regarding the energy fluxes (i.e., LE and H) varied greatly among the stands and exhibited a moderate correlation with latitude. We identified strong relationships between simulated fluxes and their environmental controls except for H, thus highlighting current strengths and limitations of CLASSIC. 
    more » « less
  4. Background The Drought Code (DC) of the Canadian Fire Weather Index System (CFWIS) has been intuitively regarded by fire managers in Alaska, USA, as poorly representing the moisture content in the forest floor in lowland taiga forests on permafrost soils. Aims The aim of this study was to evaluate the DC using its own framework of water balance as cumulative additions of daily precipitation and substractions of actual evaporation. Methods We used eddy covariance measurements (EC) from three flux towers in Interior Alaska as a benchmark of natural evaporation. Key results The DC water balance model overpredicted drought for all 14 site-years that we analysed. Errors in water balance cumulated to 109 mm by the end of the season, which was 54% of the soil water storage capacity of the DC model. Median daily water balance was 6.3 times lower than that measured by EC. Conclusions About half the error in the model was due to correction of precipitation for canopy effects. The other half was due to dependence of the actual evaporation rate on the proportional ‘fullness’ of soil water storage in the DC model. Implications Fire danger situational awareness is improved by ignoring the DC in the CFWIS for boreal forests occurring on permafrost. 
    more » « less
  5. Abstract We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPPand EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity ∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP(1.3–2.5 days °C−1) or later EndGPP(1.5–1.8 days °C−1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPPand EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPPand EndGPPwere 11.7 and 11.3 days, respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE 6.3 and 10.5 days). 
    more » « less
  6. Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  7. na (Ed.)
    Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  8. Abstract Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2flux across 181 ecosystems. We find an increase in the annual CO2sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2losses have substantially impacted the CO2balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming. 
    more » « less